что такое демпферная обмотка
Что такое демпферная обмотка
КОНСТРУКТИВНЫЕ ОСОБЕННОСТИ СИНХРОННЫХ МАШИН
Сердечник статора представляет собой полый цилиндр, набранный из отдельных листов электротехнической стали толщиной 0,5 мм. На внутренней поверхности этого цилиндра выштамповывают пазы для укладки обмотки якоря. Электротехническую сталь поставляют в виде листов или лент шириной не более 1 м. При внешнем диаметре сердечника менее 1 м его собирают из цельных кольцевых пластин, а при большем диаметре каждый кольцевой слой составляют из 
По выполнению ротора машины подразделяются на явнополюсные и неявнополюсные.
Обмотку возбуждения в мощных машинах для лучшего охлаждения выполняют из неизолированных медных шин большого сечения, намотанных на ребро. Между соседними витками укладывают изоляционные прокладки, пропитанные в смоле. Катушку запекают и устанавливают на полюсе, на который по периметру предварительно наносят корпусную изоляцию. В машинах небольшой мощности катушки обмотки возбуждения выполняют из изолированных проводников прямоугольного или круглого сечения.
На полюсах ротора часто укладывают демпферную обмотку. Ее размещают в пазах полюсных наконечников. Медные стержни этой обмотки, уложенные в пазы, по торцам замыкают пластинами или кольцами так, что образуется клетка. Демпферные обмотки делятся на продольные и продольно-поперечные.
Демпферная обмотка выполняет ряд функций. В генераторах она ослабляет влияние несимметричной нагрузки и снижает амплитуду колебаний ротора, возникающих в некоторых случаях при параллельной работе. В двигателях она является пусковой обмоткой, а также снижает амплитуду колебаний ротора при пульсации нагрузки.
Явнополюсные роторы применяют в машинах большой мощности с относительно низкой частотой вращения, т. е. имеющих большое число полюсов. Синхронные машины с явнополюсным ротором и горизонтальным валом широко используют в качестве двигателей и генераторов. Общий вид ротора явнополюсной машины показан на рис. 7. Существует специальный класс синхронных явнополюсных генераторов с вертикальным валом, предназначенных для непосредственного 
Для уменьшения потерь в пяте между ее трущимися поверхностями (пяты и собственно подпятника) создается слой смазки достаточной толщины.
Для восприятия радиальных усилий, действующих на ротор гидрогенератора, на его валу устанавливают один или два направляющих подшипника. Один подшипник устанавливают при жестком фланцевом соединении валов гидрогенератора и турбины. Вторым направляющим подшипником в этом случае является направляющий подшипник турбины. Подпятник и направляющие подшипники размещаются на крестовинах, которые служат для восприятия и передачи вертикальных и радиальных усилий на фундамент или на корпус статора. Различают верхнюю и нижнюю крестовины.
В зависимости от расположения подпятника гидрогенераторы подразделяются на подвесные и зонтичные. В подвесном гидрогенераторе (рис. 9, а) подпятник расположен над ротором на верхней крестовине и весь агрегат «подвешен» к этой крестовине и к подпятнику.
В зонтичном гидрогенераторе подпятник расположен на нижней крестовине (рис. 9, б) или на крышке турбины и генератор в виде зонта находится над подпятником. При зонтичном исполнении гидрогенератор имеет меньшие массу и высоту, чем при подвесном исполнении, за счет уменьшения размеров верхней крестовины, имеющей больший диаметр, чем нижняя.
Механическая прочность различных деталей гидрогенераторов рассчитывается по так называемой угонной частоте вращения, которая в 2-3 раза больше номинальной и может иметь место в результате разгона ротора при аварийном отключении генератора от сети.
Неявнополюсные роторы (рис. 10 и 11) применяют в синхронных машинах большой мощности, имеющих частоту вращения п = 1500÷3000 об/мин. Изготовление машин большой мощности с такими частотами вращения при явнополюсной конструкции ротора невозможно по условиям механической прочности ротора и крепления полюсов и обмотки возбуждения.
Из-за больших центробежных сил, действующих на обмотку возбуждения, ее крепление в пазах производят с помощью немагнитных металлических клиньев. Немагнитные клинья ослабляют магнитные потоки пазового рассеяния, которые могут вызывать насыщение зубцов и приводить к уменьшению полезного потока. Пазы большого зубца закрывают магнитными клиньями. Лобовые части обмотки закрепляют роторными бандажами. Обмотка ротора имеет изоляцию класса В или F. Выводы от обмотки возбуждения подсоединяют к контактным кольцам на роторе.
Вдоль оси ротора по всей его длине просверливают центральное отверстие, которое служит для исследования материала центральной части поковки и для разгрузки поковки от опасных внутренних напряжений. На рис. 12 дан общий вид турбогенератора. В турбогенераторах функцию демпферной обмотки выполняют массивное тело ротора и клинья.
Что такое электрическое демпфирование, демпферные витки и обмотки
Демпфирование — увеличение потерь энергии в системе с целью повышения затухания колебаний в ней.
Демпфирование применяется в измерительных приборах для уменьшения колебаний указательной стрелки и в других устройствах. Механическое демпфирование осуществляется путем увеличения трения или увеличения сопротивления среды, в которой движется система. Например, к вращающейся системе прибора прикрепляется легкий поршенек, который движется в трубке, замедляя движение подвижной системы.
Электрические аппараты, имеющие подвижные части, всегда имеют в том или ином виде тормозящие устройства, так как движение подвижной части где-то должно быть остановлено и запас кинетической энергии поглощен. Прежде всего во всякой подвижной системе существуют силы трения, всегда направленные против движения.
Если кинетическая энергия велика, прибегают к специальным тормозящим устройствам, в которых поглощается избыток кинетической энергии. В ряде аппаратов (например в реле) тормозящие устройства предназначены не только для поглощения избытка кинетической энергии подвижных частей (при подходе к уnopу во избежание сильного удара), но и для замедления действии аппарата.
В первом случае, когда тормозящее устройство предназначено только для поглощения избытка кинетической энергии в конце хода, оно обычно носит название буферного устройства и в большинстве случаев к моменту начала работы этого устройства сила, двигающая части аппарата, прекращается. Во втором случае тормозящее устройство действует во время существования движущей силы в аппарате и носит название демпферного.
Демпфирование в электрических аппаратах
Электрическое демпфирование может осуществляться путем взаимодействия между магнитным полем и токами, индуцируемыми в проводниках, движущихся в этом магнитном поле, так как по закону Ленца в этом случае всегда должна возникать сила, препятствующая этому движению. Например, к подвижной системе прибора прикрепляется пластинка из проводящего материала, которая движется между полюсами магнита. При этом в ней возникают вихревые токи, взаимодействие которых с магнитным полем тормозит движение системы.
Демпферные витки — витки на магнитопроводе, служащие для демпфирования подвижной части магнитной системы. Например, такие витки из меди устанавливаются на магнитопровод магнитного пускателя или контактора с краев плоскостей соприкосновения якоря и сердечника.
Любой электромагнит переменного тока имеет силу тяги, изменяющуюся по времени, причем в моменты прохода магнитного потока через нуль она также равна нулю. Это обстоятельство ведет к тому, что якорь электромагнита не может устойчиво находиться в своем конечном положении, а под действием противоположных сил в области нулевого значения потока якорь и связанные с ним детали стремятся отойти назад.
Быстро возрастающая сила тяти якоря не позволяет оторваться этим деталям от упора на значительное расстояние, но на небольшое расстояние они все же отходят. В результате детали аппарата, прижатые якорем к упору, не находятся в неподвижном положении, а дрожат в такт с силой тяги электромагнита.
Это вызывает дребезжание указанных деталей, расшатывание механизма, износ контактов, прижимаемых электромагнитом, шумы и прочие неприятные последствия. Одной из распространенных мер борьбы против этого явления является применение короткозамкнутой обмотки, охватывающей часть сечении сердечника.
В этом случае часть потока, пронизывающая короткозамкнутую обмотку, не совпадает по фазе с другой частью потока, а следовательно, и нулевое значение силы тяги потоков не совпадают по времени. В результате данный электромагнит переменного тока не будет иметь момента времени, в который его сила тяги равна нулю и указанное дребезжание будет отсутствовать. Обычно число витков, короткозамкнутой обмотки равно единице и ее называют соответственно короткозамкнутый виток.
В некоторых конструкциях электромагнитов постоянного тока на сердечник (или на якорь) накладывают специальную короткозамкнутую обмотку, имеющую малое электрическое сопротивление. Это делается затем, чтобы, замедлить работу электромагнита: при наличии такой обмотки нарастание потока после включения обмотки ил напряжение и слад потока после отключения тока происходит медленнее, чем без такой обмотки.
Влияние такой обмотки будет сказываться не только при неподвижном якоре в процессе неустановившегося процесса потока, но и при движении якоря, когда вследствие изменения воздушного зазора поток в электромагните стремится измениться. Такой физический процесс называется магнитным демпфированием.
Применение дополнительной обмотки для целей демпфирования процессов в электромагните переменного тока не достигает целей и поэтому не используется.
Магнитное демпфирование часто применяется для замедления срабатывания и отпускания электромагнитных реле и реле времени постоянного тока. При этом происходит замедление нарастания и убывания магнитного потока в сердечнике. Для этого на магнитопроводе реле размещают короткозамкнутые витки. Благодаря этому техническому решению получают выдержку времени от 0,2 до 10 сек. Иногда магнитное демпфирование осуществляют не применением короткозамкнутых витков, а замыканием накоротко рабочей катушки реле.
Электромагнитные реле с магнитным демпфированием: а — с медной втулкой; б — с медным кольцом у рабочего зазора.
Существует ряд практических случаев, когда время действия электромагнитов и электромагнитных аппаратов (реле, пускателей, контакторов) нужно иметь как можно меньше. В этом случае наличие короткозамкнутых обмоток, массивных частей магнитопровода, металлических каркасов катушки и короткозамкнутых витков, образованных из крепежных и прочих деталей аппарата, лежащих на пути потока, является недопустимым, так как они будут увеличивать время действия электромагнита.
Демпфирование в электрических машинах
Почти все синхронные двигатели, компенсаторы и преобразователи, а также многие явнополюсные синхронные генераторы снабжаются успокоительными обмотками. В ряде случаев они находят применение из-за влияния на устойчивость системы, но большей частью предназначаются для других целей. Однако вне зависимости от причин применения успокоительных обмоток они в большей или меньшей степени влияют на устойчивость.
Принципиально различаются два типа успокоительных обмоток: полные или замкнутые и неполные или разомкнутые. В обоих случаях обмотка состоит из уложенных в пазах на поверхности полюсов стержней, концы которых на каждой стороне полюса соединены.
В полной успокоительной обмотке концы стержней замыкаются кольцами, соединяющими стержни всех полюсов. В неполной обмотке стержни замыкаются дугами, каждая из которых соединяет стержни только одного полюса. В последнем случае успокоительная обмотка каждого полюса представляет собой независимую цепь.
Полные успокоительные обмотки подобны беличьим клеткам роторов асинхронных машин, за исключением того, что в успокоительных обмотках стержни расположены по окружности ротора неравномерно, так как между полюсами стержней нет. В некоторых конструкциях замыкающие кольца выполняются из отдельных участков, которые соединяются между собой болтами, чтобы облегчить снятие полюсов.
Назначение успокоительных обмоток у синхронных машин:
Повышение пускового момента синхронных двигателей, компенсаторов и преобразователей;
Предотвращение качаний. Для этих целей успокоительные обмотки были выполнены впервые, и отсюда они получили свое название;
Подавление колебаний, возникающих из-за толчков при коротких замыканиях или переключениях;
Уменьшение несимметрии фазных напряжений на выводах при несимметричной нагрузке, т.е. уменьшение напряжения обратной последовательности;
Предотвращение перегрева поверхности полюсов однофазных генераторов вихревыми токами;
Создание тормозного момента в генераторе при несимметричных коротких замыканиях и уменьшение этим избыточного момента;
Создание дополнительного момента при синхронизации генераторов;
Снижение скорости восстановления напряжения на контактах выключателей;
Уменьшение механических напряжений в изоляции обмотки возбуждения во время бросков тока в цепи якоря.
Генераторы, приводимые во вращение поршневыми первичными двигателями, имеют тенденцию к раскачиванию из-за того, что вращающий момент первичных двигателей пульсирует. Электродвигатели, приводящие во вращение нагрузку с пульсирующим моментом, подобную компрессорам, также имеют тенденцию к качаниям.
Указанные качания называют «вынужденными качаниями». Могут иметь место и «самопроизвольные качания», возникающие тогда, когда синхронные машины соединены линией, у которой соотношение активного сопротивления к индуктивному велико.
Успокоительные обмотки с малым сопротивлением значительно уменьшают амплитуды как вынужденных, так и самопроизвольных качаний.
Влияние успокоительных (демпфирующих обмоток) на устойчивость электрических систем проявляется в том, что они:
Создают демпфирующий (асинхронный) момент прямой последовательности;
Создают тормозной момент обратной последовательности во время несимметричных коротких замыканий;
Изменяя полное сопротивление обратной последовательности, влияют на отдаваемую машиной электрическую мощность прямой последовательности во время несимметричных коротких замыканий.
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!
Подписывайтесь на наш канал в Telegram!
Просто пройдите по ссылке и подключитесь к каналу.
Не пропустите обновления, подпишитесь на наши соцсети:
Демпферная обмотка синхронного генератора предназначена для. Принцип действия
Назначение и устройство синхронных генераторов
Синхронный генератор состоит из двух основных частей: неподвижного статора (якоря) с помещенной в нем обмоткой и подвижного (вращающегося) ротора (индуктора) с обмоткой возбуждения. Назначение обмотки возбуждения состоит в том, чтобы создать в генераторе первичное магнитное поле для наведения в обмотке статора электродвижущей силы (э. д. е)… Если ротор сихронного генератора привести во вращение с некоторой скоростью V и возбудить от источника постоянного тока, то поток возбуждения будет пересекать проводники обмотки статора и в фазах обмотки будут индуктироваться переменные э. д. с. При подключении нагрузки к данной обмотке в ней возникнет вращающееся магнитное поле. Это поле статора генератора будет вращаться в направлении, вращения поля ротора и с такой же скоростью, как поле ротора, в результате чего образуется общее вращающееся магнитное поле.
Скорость вращения магнитного поля синхронного генератора зависит от числа пар полюсов. При заданной частоте чем больше число пар полюсов, тем меньше скорость вращения магнитного поля, т.е. скорость вращения магнитного поля обратно пропорциональна числу пар полюсов. Так, например, при заданной частоте /=50 гц скорость вращения магнитного поля равна 3000 об/мин при числе пар полюсов р= 1, 1500 об/мин при р = 2V 1000 об/мин при р = 3 и т. д.
Ротор синхронного генератора конструктивно может быть выполнен явнополюсным и неявнополюсным.
Явнополюсный ротор (рис. 1, б) имеет выступающие или, как говорят, явновыраженные полюсы. Такие роторы применяют в тихоходных генераторах со скоростью вращения не более 1000 об/мин. Сердечники полюсов этих роторов набирают обычно из листов электротехнической стали толщиной 1-2 мм, которые прочно скрепляют в пакет стяжными шпильками. На валу ротора полюсы крепят болтами или при помощи Т-образного хвостовика полюса, укрепляемого в специальных пазах, профре-зерованных в стальном теле ротора.
Обмотку возбуждения наматывают изолированным медным проводом соответствующего сечения. В роторах синхронных генераторов, предназначенных для работы в электроустановках, где в качестве первичных двигателей применяются дизели, предусматривается так называемая успокоительная обмотка. Успокоительная или как еще ее называют демпферная обмотка служит для успокоения свободных колебаний, возникающих при внезапных изменениях режима работы синхронных генераторов (резкие сбросы нагрузки, падение напряжения, изменение тока возбуждения и др.), особенно в тех случаях, когда несколько генераторов работают параллельно на общую сеть.
Неявнополюсным называют ротор, имеющий вид цилиндра без выступающих полюсов. Такие роторы выполняют обычно двух- или четырехполюсными.
Явнополюсные роторы для быстроходных машин не применяют из-за сложности изготовления крепления полюсов, способных выдерживать большие центробежные усилия.
Неявнополюоный ротор (рис. 1, в) состоит из вала и стальной поковки с профрезерованными в ней пазами, в которые уложена обмотка возбуждения. В остальном неявнополюсный ротор конструктивно выполнен так же, как и явнополюсный.
§ 11-5. Демпферная (пусковая) обмотка.
Демпферная обмотка полюсов синхронных машин выполняет ряд функций. В генераторах она служит для снижения уровня динамических перенапряжений в обмотке ротора при несимметричных коротких замыканиях, гашения обратного синхронного поля, улучшения формы ЭДС и симметрии напряжений при несимметричных нагрузках отдельных фаз, успокоения качаний и повышения динамической устойчивости работы. Генераторы малой мощности (до 100 кВт) обычно не имеют демпферной обмотки.
Синхронные двигатели выполняют с демпферной обмоткой, которая служит в качестве пусковой при асинхронном пуске, а так же для успокоения качаний в процессе работы. Демпферную обмотку обычно изготовляют из стержней круглого сечения, закладываемых в круглые пазы, равномерно расположенные по дуге полюсных наконечников. Концы стержней замыкают пластинами (сегментами), расположенными вдоль полюсной дуги с обеих сторон полюса. Эти сегменты соединяют между собой по междуполюсному пространству пластинами, образуя коротко замыкающие кольца. Параметры демпферной обмотки устанавливают с учетом следующих условий. Для улучшения демпфирующего эффекта обмотка должна иметь малое активное сопротивление. Поэтому стержни, короткозамыкающие сегменты и соединительные пластины обычно выполняют из меди.
Суммарную площадь поперечного сечения стержней демпферной обмотки на один полюс целесообразно принимать близкой к 15% суммарной площади поперечного сечения меди обмотки статора, приходящейся на одно полюсное деление (мм 2)
Предварительное количество стержней демпферной обмотки на один полюс (шт.)
Предварительный диаметр стержня демпферной обмотки (мм)

Принимают значение 


Уточненное значение зубцового деления полюсного наконечника (мм)
Диаметр круглой части паза полюсного наконечника (мм)
Размеры шлица паза демпферной обмотки генераторов выбирают так, чтобы ширина 

Рис. 11-13. Эскиз полюсного
Наконечника с пазами демпферной обмотки:
Предварительная длина стержня демпферной обмотки

Затем ее уточняют при проработке конструкции машины.
Размеры короткозамыкающих сегментов выбирают такими, чтобы их высота 



Окончательно размеры сегмента в поперечном сечении

Примеры расчета машин.
4. Демпферная (пусковая) обмотка.

, мм




2
, мм
, мм
, мм
§ 11-6. Расчет магнитной цепи при холостом ходе.
Магнитное поле синхронной машины имеет сложную форму в связи с зубчатостью статора и полюсного наконечника (при наличии демпферной обмотки) и насыщением участков ярма и зубцов.
Влияние зубчатости зазора, вентиляционных каналов в сердечнике статора, насыщения зубцовой зоны и спинки статора при расчете синхронных машин, так же как и для асинхронных двигателей (см. § 9-7) и машин постоянного тока (см. § 10-8), учитывают системой коэффициентов и применением таблиц намагничивания 
Поскольку магнитная цепь синхронной машины (рис.11-14) симметрична, то расчет МДС ведется на один полюс. При этом для каждого участка определяют площадь поперечного сечения, магнитную индукцию (полагая, что она распределена равномерно по всему сечению рассматриваемого участка), напряженность поля, среднюю длину пути магнитного потока, МДС участка и суммарную МДС цепи.
Рис. 11-14. Схема магнитной цепи синхронной машины.
При расчете магнитной цепи условно принимают среднюю длину пути магнитного потока на отдельных участках магнитопровода. В действительности длина этих путей в спинке статора и ротора различна по середине и по краям полюсного деления. Соответственно неравномерно распределяется магнитная индукция.
Для упрощения расчетов при определении магнитного напряжения спинки статора следует пользоваться кривыми намагничивания, построенными с учетом этого фактора и приведенными в приложениях 11-13. Магнитную цепь синхронных машин рассчитывают в такой последовательности.

Уточненное значение магнитной индукции в воздушном зазоре (Тл)

МДС для зубцов статора синхронных машин. МДС определяют так же, как и для асинхронных двигателей (см. § 9-7).
Магнитная индукция в равновеликом поперечном сечении зубца (Тл)

Расчетная площадь поперечного сечения зубцов статора (мм 2)
Магнитная индукция в зубце статора (Тл) на расстоянии 1/3 его высоты от окружности, соответствующей диаметру 



Напряженность магнитного поля (А/см) определяют по кривым намагничивания для спинки статора (см. приложения 11-13), а среднюю длину пути магнитного потока (мм) 
МДС для спинки статора (А)

| МДС для зубцов полюсного наконечника | |||
| Магнитная индукция в зубцах полюсного наконечника (Тл) | (11-69) | ||
| Напряженность магнитного поля в зубцах полюсного наконечника (А /см)
| |||
| Средняя длина пути магнитного потока в зубцах полюсного наконечника (мм) | (11-70)![]() | ||
| МДС для зубцов полюсного наконечника (А) | (11-71) | ||
Если величина расчетной магнитной индукции в сердечнике полюса

Активная площадь поперечного сечения полюсного сердечника (мм 2) определяется шириной 

По полученным значениям магнитных потоков и известной площади поперечного сечения сердечника полюса определяют индукции в рассматриваемых сечениях полюса 

МДС для полюсов рассчитывают в такой последовательности.
| Полюсные наконечники гребенчатой конструкции (см. рис. 11-6) | ||
| Величина выступа полюсного наконечника (мм) | (11-72) | |
| Высота широких полюсных наконечников (мм) | (11-75) | |
| Высота узких (в том числе крайних) полюсных наконечников (мм) | (11-76) | |
| Расстояние между боковыми поверхностями узких (в том числе крайних) пакетов Смежных полюсных наконечников, мм | (11-77) | |
| Коэффициент магнитной проводимости потока рассеяния в зоне узких пакетов | (11-78) | |
| Коэффициент магнитной проводимости потока рассеяния в зоне крайних пакетов | ||
| Суммарный коэффициент магнитной проводимости потока рассеяния полюсных наконечников гребенчатой | ||
| Длина пути магнитного потока в полюсе, при отсутствии демпферной обмотки (мм) | (11-81) | |
| То же, при наличии демпферной обмотки | (11-82) | |
| Полюсные наконечники традиционной конструкции (см. рис. 11-8 ) | ||
| Высота полюсного наконечника (мм) | (11-83) | |
| Расстояние между боковыми поверхностями смежных полюсных наконечников (мм) Коэффициент магнитной проводимости потока рассеяния по внутренним поверхностям полюсных наконечников | ||
| Длина пути магнитного потока в полюсе при отсутствии демпферной обмотки (мм) (11-99) | (11-109) | |
| МДС для зазора в стыке между сердечниками полю полюса и ротора (А) | ||
| Параметры магнитной цепи | ||
| Суммарная МДС магнитной цепи | (11-112) | |
Демпферные обмотки
Демпферная обмотка в гидрогенератора предназначена для: демпфирования (успокоения) колебаний ротора при переходных процессах; гашения поля обратной последовательности, создаваемого токами обратной последовательности при несимметричных режимах работы; улучшения условий входа в синхронизм; уменьшения перенапряжений при несимметричных коротких замыканиях.
Изготовляют демпферную обмотку из круглых медных стержней, вставленных в отверстия (пазы), выштампованные в полюсных наконечниках. По торцам стержни одного полюса припаивают к массивным медным шинам-сегментам твердым припоем. Короткозамыкающие сегменты полюсов тихоходных гидрогенераторов соединяются между собой эластично пакетом тонких (около 0,2 мм) изогнутых пластин.
Элементы конструкции ротора
В синхронных двигателях, если напряжение в катушке полюса на изгиб превосходит допускаемое (для меди 500 кгс/см 2), необходимо в междуполюсные окна соседних полюсов устанавливать распорки из немагнитного материала, которые будут воспринимать усилия от тангенциальной составляющей центробежной нагрузки, создаваемой катушками. Распорки изготовляются из прочного кованого алюминиевого сплава или из литой бронзы. Распорки из кованого, термически обработанного алюминиевого сплава выполняются цельными и прикрепляются к остову ротора болтами. Для уменьшения перекрытия поверхности катушек и обеспечения максимального прихода охлаждающего воздуха в междукатушечное пространство соседних полюсов распорки изготовляются меньшей высоты, чем катушка. Распорка устанавливается между катушками на изоляционных прокладках из теплостойкого материала (стеклотекстолита марки СТЭФ). Литые распорки из медного сплава, состоящие из двух частей, опирающихся на башмаки полюсов и распертых сверху шпилькой, в вертикальных двигателях применяются редко.
В вертикальных синхронных двигателях токоподвод от контактных колец к обмотке возбуждения выполняется из изолированных кабелей и помещается в центральном отверстии вала.
С одного конца вала кабели присоединяются к выводам катушек. С другого конца кабели токоподвода с помощью кабельных наконечников присоединены к шпилькам контактных колец. На участке от места выхода кабеля из центрального отверстия вала до катушек полюсов токоподвод располагается на остове ротора. Кабели токоподвода закрепляются на остове ротора и на валу посредством изоляционных прокладок, стальных хомутиков и болтов.
В большинстве типов синхронных вертикальных двигателей применяются вентиляторы, выполненные в виде отдельных крыльев, прикрепленных с обеих сторон ротора к торцам обода. Вентиляторные крылья изготовляются из листовой стали.
Избыточный или качательный момент.
Избыточный момент обусловливает вынужденные колебания синхронной машины. Он представляет собой периодическую функцию времени, среднее значение которой равно нулю.
3) Искрение под щётками машин постоянного тока Причины искрения. Способы улучшения коммутации.
С точки зрения надежности наиболее слабым элементом в машинах постоянного тока является скользящий контакт щеток по коллектору. При коммутации между щетками и коллектором может наблюдаться искрение. Сильное искрение вызывает повреждения поверхности коллектора и щеток.
Механические причины вызваны неполным прилеганием щеток к коллектору. Они вызваны некачественным изготовлением коллектора и щеточного узла: неровная или загрязненная поверхность коллектора, его эллиптичность, биение, слабое давление щеток на коллектор и т.д.
Потенциальные причины искрения связаны с напряжением между коллекторными пластинами. Если оно превышает допустимое значение, появляются искры между смежными пластинами. При этом сгорает угольная пыль в изоляционных промежутках между пластинами. В машинах большой мощности искры могут перейти в электрическую дугу, которая перекрывает большую часть коллектора (круговой огонь на коллекторе). При этом машина выходит из строя.
Электромагнитные причины связаны с протеканием электромагнитных процессов в коммутируемых секциях. Они являются основными.
Идея улучшения коммутации сводится к тому, чтобы криволинейную коммутацию, привести к прямолинейной, а для этого необходимо, чтобы добавочный ток был равен нулю.
1. За счет сдвига щеток с нейтрали,
2. За счет установки добавочных полюсов.
![]() |
1. Улучшение коммутации за счет сдвига щеток с нейтрали, рис. 67 а, б, в
2. Улучшение коммутации за счет установки добавочных полюсов
Дополнительные полюса устанавливают на геометрической нейтрали. Количество их равно числу главных полюсов. Это простое и целесообразное решение. Все современные машины постоянного тока снабжены дополнительными полюсами.
Демпферную (пусковую) обмотку размещают в пазах полюсных наконечников ротора (рис. 10.20, ). Эта обмотка в генераторах служит для ослабления обратного синхронного поля при несимметричной нагрузке, успокоения качаний ротора, предотвращения динамических перенапряжений при несимметричных коротких замыканиях и повышения электродинамической стойкости. В двигателях эта обмотка необходима для асинхронного пуска и успокоения качаний ротора.
Расчет демпферной обмотки заключается в определении количества и размеров стержней обмотки, а также размеров короткозамыкающих сегментов. Короткозамыкающие сегменты замыкают все стержни с торцов полюса и соединяются с сегментами соседних полюсов, образуя кольцо (рис. 10.20, ). В этом случае демпферная обмотка носит название продольно-поперечной. Если сегменты соседних полюсов не соединяются между собой (рис. 10.20, ), то обмотка называется продольной. Наиболее часто применяют продольно-поперечные демпферные обмотки.
Рис. 10.20. Демпферная (пусковая) обмотка:

Коэффициент в скобках (10.55) для генераторов принимается равным 0,15…0,25, для двигателей 0,25…0,35.
округляют до размера, кратного 0,5 мм.
Зубцовый шаг на роторе

Кроме выполнения основной своей задачи демпферная обмотка снижает амплитуды гармоник магнитного поля, обусловленных зубчатостью статора. Эти гармоники и вызывают пульсацию ЭДС в обмотке статора и образуют токи и добавочные потери в самой демпферной обмотке. Для того чтобы демпферная обмотка наилучшим образом выполняла свои задачи, при ее проектировании следует соблюдать следующие требования.
Для исключения из кривой ЭДС высших гармонических, обусловленных зубчатостью статора, необходимо иметь:

В двигателях для уменьшения добавочных потерь и исключения «прилипания» ротора число стержней и их шаг выбирают так чтобы













из приложений 5-7, 21






















