что такое коммутируемая сеть
Локальная сеть. Она объединяет компьютеры в единую рабочую группу, позволяя решать огромное число задач. Даже если эта сеть — небольшая. Из трех ключевых составляющих любой локальной сети мы остановимся на коммутирующем оборудовании. При наличии всего двух ПК объединить их можно и без него. Однако, если в вашем офисе более трех компьютеров, вам понадобится оборудование, которое будет отвечать за работу сети — за ее коммутацию.
Герой нашего времени
Неуправляемые коммутаторы. От 5 до 32 портов. Никаких возможностей по настройке. Там просто нечем управлять. Дешевая и сердитая коммутация сетей на скоростях 10/100 Мбит/с. Именно они активно и успешно вытесняют с рынка концентраторы. Особо продвинутые модели имеют дополнительно один порт стандарта Gigabit Ethernet, а 3Com даже рискнула выпустить 8-портовый гигабитный неуправляемый коммутатор.
Управляемые коммутаторы. Делятся по обеспечиваемому уровню коммутации. Самые простые модели работают на втором уровне, более «навороченные» обеспечивают третий, дальше углубляться не будем. Понятно, что решения именитых производителей стоят дороже. И даже понятно почему — это плата за надежность, качество, мощную поддержку. Количество портов — от 12 для Fast Ethernet (10/100 Мбит/с) решений и от 8 для Gigabit (1 Гбит/с) решений. Обычно такие коммутаторы имеют возможность расширения.
Успех коммутируемых сетей обусловлен не только тем, что они позволяют решить проблемы перегрузки, рано или поздно возникающие в любой сети по причинам, изложенным выше, и не только тем, что эта технология становится доступной по цене практически для любой организации. Существенную роль во всеобщей миграции к коммутируемым сетям играет и тот факт, что их внедрение не требует перестройки существующей инфраструктуры. Переход не вызывает значительных первоначальных затрат и может осуществляться постепенно, устанавливая коммутаторы только в узких местах сети.
Коммутируемые сети
6.1. Иерархическая модель построения локальных сетей
Современные сети развивающихся предприятий должны быть легко масштабируемыми (расширяемыми), управляемыми и надежными. Подобные задачи наиболее просто решаются в случае использования иерархической топологии сети, модель которой включает несколько уровней иерархии. Сеть среднего предприятия может быть построена по двухуровневой схеме ( рис. 6.1б), которую называют моделью со свернутым ядром. Сети крупных корпораций строятся по трехуровневой схеме ( рис. 6.1в), включающей нижний уровень доступа (Access), средний уровень распределения ( Distribution ) и верхний уровень ядра ( Core ).
Безопасность и управляемость сетей, построенных по иерархической топологии, сравнительно легко реализуются, поскольку на каждом уровне могут решаться свои специфические задачи. Политика информационной безопасности предусматривает обеспечение защиты на всех уровнях модели.
Важным вопросом при проектировании сети иерархической модели является место размещения серверов, банков и баз данных, сетевых принтеров. Необходимо минимизировать количество промежуточных устройств (коммутаторов) между пользователем и общесетевым оборудованием, а также оптимизировать пропускную способность соединений, поскольку к серверам и банкам данных может одновременно обращаться множество конечных устройств.
К коммутаторам сетей разной сложности и уровня иерархической структуры предъявляются различные требования, поэтому выпускаются несколько типов коммутаторов:
Материнская плата ( шасси ) коммутатора модульной конфигурации позволяет монтировать разное количество линейных плат, содержащих порты, по требованию заказчика. Обычно коммутаторы модульной конфигурации являются наиболее дорогостоящими.
Форм-факторы отражают характеристики коммутаторов, среди которых наиболее важными являются плотность портов и производительность.
Плотность портов характеризует способность коммутатора поддерживать требуемое количество устройств в сети (компьютеров, серверов, IP-телефонов, сетевых принтеров), для чего требуется определенное количество доступных портов.
Производительность коммутатора определяет количество передаваемых данных в единицу времени через все его порты. Это значение обычно несколько меньше суммы производительностей каждого порта. Порты коммутатора характеризуются определенной скоростью передачи данных, например, широко распространенный коммутатор уровня доступа Catalyst 2960 может иметь 24 порта со скоростью 100 Мбит/си 2 или 4 порта со скоростью 1000 Мбит/с.
Для повышения производительности (пропускной способности) какого либо участка сети в ряде случаев проводят объединение ( агрегирование ) соединений, а также создают транковые соединения, что характерно для всех уровней модели рис. 6.1в. Принцип агрегирования нескольких портов коммутатора для обеспечения требуемой производительности наглядно отображает схема рис. 6.2, когда доступ к серверу может одновременно потребоваться нескольким конечным узлам. Для обеспечения требуемой повышенной производительности соединения сервера с коммутатором объединяются (агрегируются) несколько портов коммутатора.
Время с момента прихода первого байта кадра на входной порт и до его появления на выходном порте характеризует задержку передачи. Значение задержки во многом определяется режимом коммутации.
Для буферизации кадров при асимметричном режиме коммутатор может использовать буферную память портов или общую память коммутатора. Во втором случае требуемый каждому порту объем памяти выделяется динамически, что и позволяет успешно реализовать асимметричную коммутацию.
Для создания локальных сетей выпускается широкий спектр коммутаторов, например, Catalyst 2960, 3560, 3750, 4500, 6500 и другие. Они различаются количеством портов, производительностью, функциональными возможностями, ценой. Информацию о них можно найти в Интернете.
Коммутируемые сети
6.1. Иерархическая модель построения локальных сетей
Современные сети развивающихся предприятий должны быть легко масштабируемыми (расширяемыми), управляемыми и надежными. Подобные задачи наиболее просто решаются в случае использования иерархической топологии сети, модель которой включает несколько уровней иерархии. Сеть среднего предприятия может быть построена по двухуровневой схеме ( рис. 6.1б), которую называют моделью со свернутым ядром. Сети крупных корпораций строятся по трехуровневой схеме ( рис. 6.1в), включающей нижний уровень доступа (Access), средний уровень распределения ( Distribution ) и верхний уровень ядра ( Core ).
Безопасность и управляемость сетей, построенных по иерархической топологии, сравнительно легко реализуются, поскольку на каждом уровне могут решаться свои специфические задачи. Политика информационной безопасности предусматривает обеспечение защиты на всех уровнях модели.
Важным вопросом при проектировании сети иерархической модели является место размещения серверов, банков и баз данных, сетевых принтеров. Необходимо минимизировать количество промежуточных устройств (коммутаторов) между пользователем и общесетевым оборудованием, а также оптимизировать пропускную способность соединений, поскольку к серверам и банкам данных может одновременно обращаться множество конечных устройств.
К коммутаторам сетей разной сложности и уровня иерархической структуры предъявляются различные требования, поэтому выпускаются несколько типов коммутаторов:
Материнская плата ( шасси ) коммутатора модульной конфигурации позволяет монтировать разное количество линейных плат, содержащих порты, по требованию заказчика. Обычно коммутаторы модульной конфигурации являются наиболее дорогостоящими.
Форм-факторы отражают характеристики коммутаторов, среди которых наиболее важными являются плотность портов и производительность.
Плотность портов характеризует способность коммутатора поддерживать требуемое количество устройств в сети (компьютеров, серверов, IP-телефонов, сетевых принтеров), для чего требуется определенное количество доступных портов.
Производительность коммутатора определяет количество передаваемых данных в единицу времени через все его порты. Это значение обычно несколько меньше суммы производительностей каждого порта. Порты коммутатора характеризуются определенной скоростью передачи данных, например, широко распространенный коммутатор уровня доступа Catalyst 2960 может иметь 24 порта со скоростью 100 Мбит/си 2 или 4 порта со скоростью 1000 Мбит/с.
Для повышения производительности (пропускной способности) какого либо участка сети в ряде случаев проводят объединение ( агрегирование ) соединений, а также создают транковые соединения, что характерно для всех уровней модели рис. 6.1в. Принцип агрегирования нескольких портов коммутатора для обеспечения требуемой производительности наглядно отображает схема рис. 6.2, когда доступ к серверу может одновременно потребоваться нескольким конечным узлам. Для обеспечения требуемой повышенной производительности соединения сервера с коммутатором объединяются (агрегируются) несколько портов коммутатора.
Время с момента прихода первого байта кадра на входной порт и до его появления на выходном порте характеризует задержку передачи. Значение задержки во многом определяется режимом коммутации.
Для буферизации кадров при асимметричном режиме коммутатор может использовать буферную память портов или общую память коммутатора. Во втором случае требуемый каждому порту объем памяти выделяется динамически, что и позволяет успешно реализовать асимметричную коммутацию.
Для создания локальных сетей выпускается широкий спектр коммутаторов, например, Catalyst 2960, 3560, 3750, 4500, 6500 и другие. Они различаются количеством портов, производительностью, функциональными возможностями, ценой. Информацию о них можно найти в Интернете.
Коммутация сетей. Часть 1
Коммутация – важнейший аспект построения любой сети, особенно – корпоративной. Этой публикацией мы открываем цикл статей, посвященных коммутации. В первой ее части мы сосредоточимся на теоретической составляющей и начнем с определения терминов.
Коммутацией в компьютерной сети принято называть процесс объединения ее абонентов с помощью транзитных узлов. В качестве абонентов могут выступать как персональные компьютеры, так и другие офисные устройства (принтеры, факсы и т.д.), а также отдельные сегменты локальных сетей.
Необходимость коммутации сетей возникла в связи с невозможностью соединения двух абонентов в сетях общего доступа с помощью индивидуальной физической линии связи – т.к. таких число таких абонентских пар исторически всегда превышало возможности сетевой инфраструктуры. Потребовались технологии коммутации, позволяющие связывать абонентов, разделяя между ними существующие физические каналы связи. В общем случае эти технологии сводятся к тому, что за каждым абонентом закрепляется личная линия связи, которая обеспечивает его подключение к устройству-коммутатору, а линии связи между несколькими коммутаторами, используются уже совместно.
Коммутаторы делятся на два типа:
Также коммутаторы можно разделить на три уровня в зависимости от тех задач, которые они выполняют в структуре локальной сети.
Теперь рассмотрим некоторые общие термины, важные для понимания процесса коммутации сетей: СКС, ЛВС и IP и широковещательный домен.
Структурированная кабельная система (СКС) – это физическая часть сети, включающая в себя, в узком смысле, кабели, переключатели, коммутационные панели и т.д., а в широком – совокупность сетей, в которую могут входить локальные вычислительные сети, (ЛВС) телефония, устройства видеонаблюдения и т.д. Как правило для настройки коммутации системному администратору не требуется глубоко погружения в физическую архитектуру сети.
IP-адресация: индивидуальный сетевой адрес узла в компьютерной сети, строящийся на базе стека протоколов TCP/IP. При подключении роутера к сети роутер как правило выдает IP-адрес вида 192.168.1.x. Начальные цифры обусловлены тем, что IP-адреса можно разделить на публичные и приватные. Первые применяются в интернете, они уникальны и распределяются IANA(Internet Assigned Numbers Authority). Вторые – нужны для использования в частных сетях. Они повторяются в разных локальных сетях т.к. не выходят за их пределы.
Широковещательный домен – логический сектор сети, необходимый для широковещательной передачи данных между устройствами без задействования маршрутизаторов. Подробнее об их функции в контексте теории коммутации мы поговорим в следующих публикациях.
В следующей статье мы расскажем о некоторых характеристиках коммутаторов, определяющихся понятиями, освещенными выше, а также рассмотрим уровни модели стека сетевых протоколов Open Systems Interconnection (OSI/ISO), затрагивающие коммутацию в локальных сетях предприятий.
Национальная библиотека им. Н. Э. Баумана
Bauman National Library
Персональные инструменты
Коммутация (вычислительные сети)
Содержание
Общие сведения
Коммута́ция — процесс соединения абонентов коммуникационной сети через транзитные узлы.
Коммуникационные сети должны обеспечивать связь своих абонентов между собой. Абонентами могут выступать ЭВМ, сегменты локальных сетей, факс-аппараты или телефонные собеседники. Как правило, в сетях общего доступа невозможно предоставить каждой паре абонентов собственную физическую линию связи, которой они могли бы монопольно «владеть» и использовать в любое время. Поэтому в сети всегда применяется какой-либо способ коммутации абонентов, который обеспечивает разделение имеющихся физических каналов между несколькими сеансами связи и между абонентами сети.
Каждый абонент соединен с коммутаторами индивидуальной линией связи, закрепленной за этим абонентом. Линии связи протянутые между коммутаторами разделяются несколькими абонентами, то есть используются совместно.
Общий термин “коммутация ”применяется для четырех различных технологий: Конфигурационной коммутации; Коммутации кадров; Коммутации ячеек; Преобразования между кадрами и ячейками.
В основе конфигурационной коммутации лежит нахождение соответствия между конкретным портом коммутатора и определенным сегментом сети. Это соответствие может программно настраиваться при подключении или перемещении пользователей в сети.
При коммутации кадров используются кадров сетей Ethernet, Token Ring и т.д. Кадр при поступлении в сеть обрабатывается первым коммутатором на его пути. Под термином обработка понимается вся совокупность действий, производимых коммутатором для определения своего выходного порта, на который необходимо направить данный кадр. После обработки он передается далее по сети следующему коммутатору или непосредственно получателю.
В технологии АТМ также применяется коммутация, но в ней единицы коммутации носят название ячеек. Преобразование между кадрами и ячейками позволяет станциям в сети Ethernet, Token Ring и т.д. непосредственно взаимодействовать с устройствами АТМ. Эта технология применяется при эмуляции локальной сети.
Виды коммутации
Существует три принципиально различные схемы коммутации абонентов в сетях:
Принцип работы Hub’а
Сетевой концентратор или хаб (жарг. от англ. hub — центр деятельности) — сетевое устройство, предназначенное для объединения нескольких устройств Ethernet в общий сегмент сети. Устройства подключаются при помощи витой пары, коаксиального кабеля или оптоволокна.
Термин концентратор (хаб) применим также к другим технологиям передачи данных: USB, FireWire и пр.
В настоящее время хабы почти не выпускаются — им на смену пришли сетевые коммутаторы (свитчи), выделяющие каждое подключённое устройство в отдельный сегмент. Сетевые коммутаторы ошибочно называют «интеллектуальными концентраторами».
Концентратор работает на физическом уровне сетевой модели OSI, повторяет приходящий на один порт сигнал на все активные порты. В случае поступления сигнала на два и более порта одновременно возникает коллизия, и передаваемые кадры данных теряются. Таким образом, все подключённые к концентратору устройства находятся в одном домене коллизий. Концентраторы всегда работают в режиме полудуплекса, все подключённые устройства Ethernet разделяют между собой предоставляемую полосу доступа.
Многие модели концентраторов имеют простейшую защиту от излишнего количества коллизий, возникающих по причине одного из подключённых устройств. В этом случае они могут изолировать порт от общей среды передачи. По этой причине, сетевые сегменты, основанные на витой паре, гораздо стабильнее в работе сегментов на коаксиальном кабеле, поскольку в первом случае каждое устройство может быть изолировано концентратором от общей среды, а во втором случае несколько устройств подключаются при помощи одного сегмента кабеля, и, в случае большого количества коллизий, концентратор может изолировать лишь весь сегмент.
В последнее время концентраторы используются достаточно редко, вместо них получили распространение коммутаторы — устройства, работающие на канальном уровне модели OSI и повышающие производительность сети путём логического выделения каждого подключённого устройства в отдельный сегмент, домен коллизии.
Принцип работы Switch’а (коммутатора)
Сетевой коммутатор или свитч (жарг. от англ. switch — переключатель) — устройство, предназначенное для соединения нескольких узлов компьютерной сети в пределах одного сегмента сети.
Коммутатор работает на канальном уровне модели OSI, и потому в общем случае может только объединять узлы одной сети по их MAC-адресам. Коммутаторы были разработаны с использованием мостовых технологий и часто рассматриваются как многопортовые мосты.
Коммутатор хранит в памяти таблицу коммутации (хранящуюся в ассоциативной памяти), в которой указывается соответствие MAC-адреса узла порту коммутатора. При включении коммутатора эта таблица пуста, и он работает в режиме обучения. В этом режиме поступающие на какой-либо порт данные передаются на все остальные порты коммутатора. При этом коммутатор анализирует кадры (фреймы) и, определив MAC-адрес хоста-отправителя, заносит его в таблицу. Впоследствии, если на один из портов коммутатора поступит кадр, предназначенный для хоста, MAC-адрес которого уже есть в таблице, то этот кадр будет передан только через порт, указанный в таблице. Если MAC-адрес хоста-получателя не ассоциирован с каким-либо портом коммутатора, то кадр будет отправлен на все порты. Со временем коммутатор строит полную таблицу для всех своих портов, и в результате трафик локализуется. Стоит отметить малую латентность (задержку) и высокую скорость пересылки на каждом порту интерфейса.
Режимы коммутации
Существует три способа коммутации. Каждый из них — это комбинация таких параметров, как время ожидания и надёжность передачи.
Латентность, связанная с «принятием коммутатором решения», добавляется к времени, которое требуется кадру для входа на порт коммутатора и выхода с него и вместе с ним определяет общую задержку коммутатора.
Принцип работы Router’а (маршрутизатора)
Маршрутиза́тор или роутер, рутер (от англ. router), — сетевое устройство, на основании информации о топологии сети и определённых правил принимающее решения о пересылке пакетов сетевого уровня (уровень 3 модели OSI) между различными сегментами сети.
Обычно маршрутизатор использует адрес получателя, указанный в пакетах данных, и определяет по таблице маршрутизации путь, по которому следует передать данные. Если в таблице маршрутизации для адреса нет описанного маршрута, пакет отбрасывается.
Существуют и другие способы определения маршрута пересылки пакетов, когда, например, используется адрес отправителя, используемые протоколы верхних уровней и другая информация, содержащаяся в заголовках пакетов сетевого уровня. Нередко маршрутизаторы могут осуществлять трансляцию адресов отправителя и получателя, фильтрацию транзитного потока данных на основе определённых правил с целью ограничения доступа, шифрование/дешифрование передаваемых данных и т.д.
Таблица маршрутизации содержит информацию, на основе которой маршрутизатор принимает решение о дальнейшей пересылке пакетов. Таблица состоит из некоторого числа записей — маршрутов, в каждой из которых содержится адрес сети получателя, адрес следующего узла, которому следует передавать пакеты и некоторый вес записи — метрика. Метрики записей в таблице играют роль в вычислении кратчайших маршрутов к различным получателям. В зависимости от модели маршрутизатора и используемых протоколов маршрутизации, в таблице может содержаться некоторая дополнительная служебная информация. Например:
Таблица маршрутизации может составляться двумя способами:
Зачастую для построения таблиц маршрутизации используют теорию графов.



