что такое синтез белка в биологии
Транскрипция и трансляция
Удвоение ДНК происходит в синтетическом периоде интерфазы. При этом общее число хромосом не меняется, однако каждая из них содержит к началу деления две молекулы ДНК: это необходимо для равномерного распределения генетического материала между дочерними клетками.
Транскрпиция (лат. transcriptio — переписывание)
Образуется несколько начальных кодонов иРНК.
Нити ДНК последовательно расплетаются, освобождая место для передвигающейся РНК-полимеразы. Молекула иРНК быстро растет.
Трансляция (от лат. translatio — перенос, перемещение)
Рибосома делает шаг, и иРНК продвигается на один кодон: такое в фазу элонгации происходит десятки тысяч раз. Молекулы тРНК приносят новые аминокислоты, соответствующие кодонам иРНК. Аминокислоты соединяются друг с другом: между ними образуются пептидные связи, молекула белка растет.
Примеры решения задачи №1
Без практики теория мертва, так что скорее решим задачи! В первых двух задачах будем пользоваться таблицей генетического кода (по иРНК), приведенной вверху.
«Фрагмент цепи ДНК имеет следующую последовательность нуклеотидов: ЦГА-ТГГ-ТЦЦ-ГАЦ. Определите последовательность нуклеотидов во второй цепочке ДНК, последовательность нуклеотидов на иРНК, антикодоны соответствующих тРНК и аминокислотную последовательность соответствующего фрагмента молекулы белка, используя таблицу генетического кода»
По принципу комплементарности мы нашли вторую цепочку ДНК: ГЦТ-АЦЦ-АГГ-ЦТГ. Мы использовали следующие правила при нахождении второй нити ДНК: А-Т, Т-А, Г-Ц, Ц-Г.
Вернемся к первой цепочке, и именно от нее пойдем к иРНК: ГЦУ-АЦЦ-АГГ-ЦУГ. Мы использовали следующие правила при переводе ДНК в иРНК: А-У, Т-А, Г-Ц, Ц-Г.
Зная последовательность нуклеотидов иРНК, легко найдем тРНК: ЦГА, УГГ, УЦЦ, ГАЦ. Мы использовали следующие правила перевода иРНК в тРНК: А-У, У-А, Г-Ц, Ц-Г. Обратите внимание, что антикодоны тРНК мы разделяем запятыми, в отличие кодонов иРНК. Это связано с тем, что тРНК представляют собой отдельные молекулы (в виде клеверного листа), а не линейную структуру (как ДНК, иРНК).
Пример решения задачи №2
«Известно, что все виды РНК синтезируются на ДНК-матрице. Фрагмент цепи ДНК, на которой синтезируется участок центральной петли тРНК, имеет следующую последовательность нуклеотидов: ТАГ-ЦАА-АЦГ-ГЦТ-АЦЦ. Установите нуклеотидную последовательность участка тРНК, который синтезируется на данном фрагменте, и аминокислоту, которую будет переносить эта тРНК в процессе биосинтеза белка, если третий триплет соответствует антикодону тРНК»
Пример решения задачи №3
Длина фрагмента молекулы ДНК составляет 150 нуклеотидов. Найдите число триплетов ДНК, кодонов иРНК, антикодонов тРНК и аминокислот, соответствующих данному фрагменту. Известно, что аденин составляет 20% в данном фрагменте (двухцепочечной молекуле ДНК), найдите содержание в процентах остальных нуклеотидов.
Теперь мы украсили теорию практикой. Что может быть лучше при изучении новой темы? 🙂
© Беллевич Юрий Сергеевич 2018-2021
Данная статья написана Беллевичем Юрием Сергеевичем и является его интеллектуальной собственностью. Копирование, распространение (в том числе путем копирования на другие сайты и ресурсы в Интернете) или любое иное использование информации и объектов без предварительного согласия правообладателя преследуется по закону. Для получения материалов статьи и разрешения их использования, обратитесь, пожалуйста, к Беллевичу Юрию.
Биосинтез белка – важная часть пластического обмена всех клеток. Рассматривает данный процесс наука биология. В результате образуются специфичные вещества, характерные для данного организма. Происходит воспроизведение наследственной информации.
Последовательность процессов биосинтеза белка
Образование белка является многоступенчатым процессом.
Чтобы запустить реакции образования вещества, осуществляется целый ряд последовательных событий:
Перемещение и-РНК к месту синтеза белка.
Где происходит синтез белка
Образование высокомолекулярного соединения протекает в цитоплазме. Именно здесь находятся органоиды, на которых осуществляется данный процесс. Рибосома представляет собой две части: малую и большую. Чтобы биосинтез белка начался, необходимо доставить информацию из ядра в цитоплазму.
Ядро эукариот хранит информацию о первичной структуре природных полимеров. Её называют наследственной. Эта важная информация должна быть без искажения перенесена к месту синтеза белка.
С этой целью в ядре идут матричные реакции. На одной из цепей ДНК синтезируется и-РНК. Именно она является посредником между двумя частями клетки.
Этапы биосинтеза белка
Транскрипция
Процесс протекает в ядре. ДНК образована большим количеством нуклеотидов. Это единица макромолекулы. Она включает в свой состав 3 компонента:
углевод, представленный пентозой – дезоксирибозой;
минеральную кислоту – фосфорную;
органическое соединение, относящееся к классу азотистых оснований.
В составе ДНК могут содержаться 4 разных основания. Они имеют краткое обозначение, по первой букве названия:
Именно этими основаниями и отличаются нуклеотиды. Чередование 3 нуклеотидов образует триплет. Один триплет соответствует одной аминокислоте. Вопрос соответствия аминокислот триплетам изучен и указан в таблице генетического кода.
Последовательность триплетов в молекуле дезоксирибонуклеиновой кислоты, отвечающей за синтез одного белка, называют геном. Между разными генами расположены триплеты, которые не соответствуют аминокислотам. Их называют стоп-кодонами. Они служат сигналом начала и окончания гена.
Для осуществления транскрипции, участок макромолекулы ДНК раскручивается. Он выполняет роль матрицы. На нём выстраивается и-РНК. Осуществляется синтез по принципу соответствия. Еще его называют комплементарностью.
РНК также имеет нуклеотидное строение. Вместо дезоксирибозы присутствует углевод рибоза. Содержится остаток ортофосфорной кислоты. Третьим компонентом является азотистое основание. Три основания одинаковые – А, Г, Ц в ДНК и РНК. Четвертое основание рибонуклеиновой кислоты – урацил (У).
Комплементарными основаниями являются: Т – А, А – У, Г – Ц, Ц – Г. В парах комплементарных оснований первое соответствует ДНК, второе – РНК. Таким образом, на макромолекуле ДНК по принципу соответствия выстраивается и-РНК. В дальнейшем цепь РНК транспортируется через ядерную мембрану к месту синтеза белка.
Трансляция
Процесс идет на органоидах – рибосомах. Они нанизываются на цепь и-РНК, передвигаются по ней не плавно, а прерывисто. Располагаются таким образом, что внутри рибосомы находится полностью 1-2 триплета. На одну РНК может одновременно нанизываться большое количество рибосом.
В процессе принимают участие т-РНК. Они имеют пространственную структуру, принимают форму трилистника. Верхняя часть листа, то есть молекулы, содержит антикодон. Это триплет, распознающий кодон (один триплет) и-РНК.
Каждая т-РНК транспортирует к рибосоме строго определенную аминокислоту. Если триплет-антикодон т-РНК распознает триплет-кодон и-РНК, тогда аминокислота встраивается в макромолекулу белка. Следующая т-РНК подтаскивает другую аминокислоту, снова идет процесс распознавания. В данном случае также идет матричный процесс сборки белка. РНК служит матрицей для синтеза белка.
Как только белковая молекула синтезирована, она освобождается от рибосомы. Правильное чередование аминокислот в макромолекуле образует первичную структуру белковой молекулы. Она является определяющей, поэтому так важен матричный синтез белков. Другие структуры белковые макромолекулы приобретают самопроизвольно.
Схема биосинтеза белка
Процессы, ведущие к синтезу белка, можно кратко изобразить на схеме:
Первый этап – реакции, идущие в кариоплазме. Раскручивание ДНК. Транскрипция. Образование м-РНК.
Второй этап – транспорт м-РНК к рибосомам.
Третий этап – реакции, идущие в цитоплазме. Трансляция. Биосинтез белковой молекулы, протекающий при участии РНК, клеточных органоидов – рибосом.
Заключение
В реакциях матричного синтеза происходит реализация наследственной информации. В каждом организме синтезируются специфичные белковые молекулы. Они вместе с углеводами и жирами накапливаются в плодах растений. В организмах животных выполняют множество разнообразных функций.
Общая информация о биосинтезе белка: значение, код ДНК, процесс считывания и передачи информации
Общая информация о биосинтезе белка
Значение биосинтеза белка в клетке
Процесс биосинтез белка — наиболее значимая реакция пластического обмена. Способность синтезировать белок есть у всех клеток живых организмов: сложных и простых, грибов, растений и животных. Клетка содержит несколько тысяч различных белков. При этом, для каждого вида клеток характерны специфические белки.
Способность к синтезу собственных уникальных белков является наследственной и сохраняется на протяжении всей жизни организма. Биосинтез белков происходит наиболее интенсивно, когда клетки активно растут и развиваются.
Что такое биосинтез белка?
Процессом синтеза белка называется — процесс, состоящий из множества стадий, на которых происходит синтез белковой макромолекулы и последующее созревание (формирование) белка, и происходящий в живых организмах.
Фотосинтез связан с большими энергетическими затратами. Благодаря ему происходит обеспечение клеток так называемым строительным материалом, биологическими катализаторами (ферментами), регуляторами и средствами защиты организма.
Каково значение белков в клетке? Значение белков неоценимо. Для этого рассмотрим, что такое биосинтез подробнее.
Код ДНК
Определение места синтеза белковых макромолекул — наивысшее достижение молекулярной биологии. ДНК играет ключевую роль в определении структуры синтезируемого белка. Молекула ДНК содержит информацию о первичной структуре молекулы белка.
Геном — часть молекулы ДНК, содержащая информацию о первичной структуре одного белка.
Генетический код — единая для всех живых организмов система сохранения полной наследственной информации.
Если говорить о структуре, то она представляет собой определенную последовательность нуклеотидов в молекулах нуклеиновых кислот. Эта последовательность задает последовательность введения аминокислотных остатков в полипептидную цепь в ходе ее синтеза.
Согласно исследованиям ученых, каждая аминокислота в полипептидной цепи кодируется последовательностью, которая состоит из 3 нуклеотидов (это триплет нуклеотидов).
Всего выделяют 20 основных аминокислот. Каждая аминокислота имеет способность кодироваться несколькими разными триплетами.
Матрица — молекула ДНК, которая содержит информацию.
Процесс считывания и передачи информации
Расположение молекул ДНК — ядро клетки. Также они могут находиться в пластидах и митохондриях. В определенный момент происходит деспирализация молекулы ДНК и расхождение ее параллельных цепей.
В соответствии с принципом комплементарности, на этих цепях происходит синтез небольших молекул и-РНК (информационной РНК). Это транскрипция или считывание.
Молекула и-РНК, синтезированная таким образом, направляется к месту синтеза белка.
Трансляция — процесс переноса и-РНК из ядра к месту синтеза белка.
Механизм биосинтеза белка
Синтез белковых молекул осуществляется на мембранах ЭПС (эндоплазматическая сеть). Рибосома является органеллой, которая отвечает за синтез белка. Рибосомы, нанизываясь на молекулу и-РНК, формируют полисому. Молекула т-РНК (транспортная РНК), которая несет кислотный остаток, подходит к каждой рибосоме.
т-РНК отличается формой трилистика: верхушка — это триплет нуклеотидов или антикодон. Он формирует комплементарную пару с соответствующим триплетом и-РНК (кодоном).
Рибосома в процессе синтеза белка надвигается на нитевидную молекулу и-РНК, которая оказывается двумя ее субъединицами. Присоединение т-РНК к и-РНК происходит в определенном месте — в месте совпадения кодона и антикодона. Присоединение аминокислотных остатков к синтезируемой цепи происходит при помощи полипептидных связей. Происходит отсоединение т-РНК, после чего она покидает рибосому.
Это продолжается до завершения синтеза нити аминокислотных остатков (белковой молекулы).
Заключительный этап — приобретение синтезированным белком пространственной структуры. Благодаря соответствующим ферментам от него отщепляются лишние аминокислотные остатки, происходит введение небелковых фосфатных, карбоксильных и других групп, присоединение углеводов, липидов и т. д. Белок «созревает». Как только все эти процессы заканчиваются, молекула белка становится полностью функционально активной.
Особенности синтеза белка: биосинтез белка в цитоплазме, аминоацилсинтетазы, инициирующий комплекс
Особенности синтеза белка
Биосинтез белка в цитоплазме
Больше половины сухой массы клетки составляют белки. Соответственно, синтез белков имеет большое значение для обеспечения жизнедеятельности клеточных структур и их функций, а также для роста и специализации клеток.
У эукариот процесс биосинтеза белков начинается в ядре, а продолжается и завершается — в цитоплазме. Процесс биосинтеза состоит из 2 этапов:
Чтобы клетка нормально функционировала, важна регуляция экспрессии генов. Благодаря ей можно легко разобраться в последовательности и механизме функционирования клетки как единого целого.
Что такое биосинтез белка?
Синтез белка — это непростой процесс синтеза и созревания белков, регуляция которого осуществляется при помощи большого количества ферментов.
Биосинтез белка основан на синтезе полипептидных связей из аминокислот, который происходит на рибосомах при участии молекул мРНК и тРНК (трансляция), а также на посттрансляционных модификациях полипептидных цепей. Этот процесс невозможен без участия ионов-активаторов и энергии.
Весь процесс биосинтеза белка условно включает следующие этапы:
Под активацией аминокислот понимают присоединение карбоксильной группы аминокислоты к 3г-концу соответствующей тРНК.
Происходит присоединение аминокислоты к такой тРНК (ее антикодон комплементарен генетическому коду). Процесс основан на затратах энергии.
Аминоацилсинтетазы
Описанная выше реакция катализируется группой ферментов — они называются аминоацилсинтетазы. Каждая аминокислота имеет свой фермент. Образованное соединение получает название по названию соответствующей аминокислоты, к которому добавляется окончание —ил.
К примеру, комплекс между аминокислотой метионином и метиониновой тРНК — это метионил-тРНК. Комплекс между лизином и лизиновой тРНК — это лизил-тРНК и т. п.
Начало синтеза белка обеспечивается инициирующим комплексом. Этот комплекс у эукариотов формируется в цитоплазме либо на поверхности шероховатого эндоплазматического ретикулума. Происходит это в результате соединения в одну систему мРНК, рибосомы и аминоацил-тРНК.
Что касается прокариот, то у них этот комплекс формируется исключительно в цитоплазме.
В инициирующий комплекс входят стартовая аминоацил-тРНК, рибосома и зрелая мРНК. Образование пептидной цепи начинается с первой (стартовой) аминоацил-тРНК. Она присоединяется к стартовой колонне мРНК. Стартовый кодон у прокариот и эукариот не различаются — это AUG. Этот кодон соответствует аминокислоте метионина. При этом, стартовая аминоацил-тРНК, присущая только эукариотам — метионин-тРНК.
У прокариот стартовой аминоацил-тРНК выступает особая формилметионил-тРНК, которая образуется при помощи нестандартной аминокислоты, а именно — формил-метионином.
Рибосомы представляют собой клеточные структуры, которые образуются при помощи большой и малой субъединиц. У них отсутствуют оболочки. Рибосомы состоят из белка и рРНК. Наблюдается схожесть в строении рибосом прокариот и эукариот. У каждой из них есть два специальных участка: А-участок и Р-участок.
Процесс формирования инициирующего комплекса
На примере прокариотической клетки проще всего рассмотреть формирование инициирующего комплекса. Весь процесс — это определенные последовательные действия:
Окончательное формирование инициирующего комплекса дает начало синтезу полипептидной цепи — процессу элонгации.
Следующая аминоацил-тРНК определяется с помощью принципа комплементарности между кодоном и антикодоном. Происходит ее присоединение к А-участку рибосомы.
Пептидная связь между аминогруппой первой аминокислоты и карбоксильной группой второй аминокислоты формируется под влиянием фермента пептидилтрансферазы.
Важно отметить, что у пептидилтрансферазы есть одна важная особенность — фиксация на рибосоме. Другими словами, этот фермент постоянно прикреплен к месту своей работы.
Далее идет процесс транслокации — он происходит в случае правильного присоединения аминоацил-тРНК и образования пептидной связи.
Под транслокацией понимают смещение инициирующего комплекса на 3 нуклеотида вдоль молекулы мРНК.
Различные белки берут начало из разных аминокислот. Такое утверждение выглядит спорным на фоне того, что начальная аминоацил-тРНК всегда формилметионинова или метионинова. Решение заключается в следующем: инициирующая аминоацил-тРНК (формилметионинова) не формирует пептидную связь с последующей аминокислотой. Это говорит о том, что первая транслокация рибосомы осуществляется не в соответствии с правилами. Условно его можно обозначить как «холостой ход».
Считывание информации с мРНК происходит в направлении 5г-3г, а рост полипептидной цепи — в направлении N-C.
Терминация — завершающий процесс биосинтеза. Она осуществляется при наблюдении на мРНК одного из трех стоп-кодонов: UAA, UAG, UGA.
Процессинг — это процесс созревания полипептидной цепи.
Суть его в том, что происходит образование третичной конформации молекулы. В ходе процессинга могут наблюдаться изъятия определенных аминокислотных последовательностей. Процессинг в сложных белках подразумевает присоединение небелковых групп и т. п.
Биосинтез белка — один из самых сложных процессов, происходящих в клетке. Далеко не все детали этого процесса известны и изучены учеными. Больше всего исследован биосинтез белка прокариотических организмов E coli, но тоже не полностью. Поэтому приведенная выше информация является схематичной.
Генетический код. Биосинтез белка
теория по биологии 🌿 основы генетики
Генетическая информация и генетический код
Каждый вид имеет свой собственный, отличный от других видов, набор белков. Интересно то, что белки, выполняющие идентичные функции у разных видов могут быть похожими или даже абсолютно идентичными.
У белков есть несколько состояний их структур:
Именно первичная структура является определяющей свойства белка. Эта структура – цепь из аминокислот. Аминокислоты, в свою очередь, представляют собой ряд триплетов из нуклеотидов. Решая генетические задачи, обращаются как раз-таки к знакомой таблице:
Каждая аминокислота кодируется тремя нуклеотидами, которые составляют триплет или иначе кодон. Именно последовательность нуклеотидов называется генетической информацией, а участок последовательности, в котором хранится информация о первичной структуре белка это и есть ген.
Нуклеотиды, составляющие ДНК и РНК различаются:
В состав ДНК входят:
В состав РНК входят:
Кроме того, в составе РНК (рибонуклеиновой кислоты) сахар рибоза, а ДНК (дезоксирибонуклеиновой кислоты) — дезоксирибоза. РНК — одноцепочечная, а ДНК — двухцепочечная.
Между нуклеотидами есть водородные связи. Они могут быть как двойные, так и тройные. Нуклеотиды не могу быть связаны в случайном порядке. Для этого существует принцип комплементарности ДНК, по которому аденин одной цепи ДНК соединяется с тимином другой цепи ДНК, другая пара в ДНК – гуанин – цитозин. В РНК все аналогично, за исключением того, что вместо тимина там урацил. Между парами А-Т/А-У – две водородных связи, а между парами Ц-Г – три. На письме это обозначается чёрточками: двойная связь как знак «равно», а тройная – три горизонтальные черты.
Свойства генетического кода
Транскрипция и трансляция
Из цитологии известно, что генетическая информация у эукариотических клеток заключена в ядре в виде ДНК. Однако процесс биосинтеза белка происходит в цитоплазме на рибосомах.
Спиральная цепь ДНК при раскручивается, в это время по одной из цепочек ДНК строится комплементарная цепь. Из ядра в цитоплазму информация выходит в виде информационной РНК (иРНК). иРНК комплементарная одной из цепей ДНК. Этот процесс переписывания называется транскрипцией. Полученная цепь практически идентичная другой цепи ДНК, за исключением того, что вместо тимина там урацил.В процессе участвует специальный фермент РНК-полимераза.
Теперь в ядре есть цепочка, которая уже начала процесс биосинтеза. Как говорилось выше, процесс ассимиляции идет на рибосомах. иРНК выходит в цитоплазму через поры ядерной мембраны
тРНК по форме напоминает лист клевера, а по принципу работы – штамп. На него, прямо как чернила, наслаиваются кодоны.
В цитоплазме начинается процесс трансляции, то есть перевод последовательности нуклеотидов информационной РНК в последовательность аминокислот белка.
Рибосома захватывает стартовый конец цепи иРНК. Затем она начинает двигаться по цепи, одна остановка рибосомы происходит на 6-ти нуклеотидах. В это время молекула тРНК, на которых есть триплет аминокислоты «подлетает» к цепи, в месте, где находится рибосома. За время остановки рибосомы транспортная РНК успевает распознать свою пару на цепи иРНК, которая называется антикодоном. Тогда тРНК «ставит свой штамп», оставляя на цепи свой кодон. Между нуклеотидами образуются водородные связи. Так нарастает новая цепь. На одной информационной РНК работает сразу много рибосом, поэтому работа идет очень быстро. Совокупность рибосом, синтезирующих на одной иРНК, называется полисомой.
По окончанию процесса биосинтеза, цепочка отсоединяется от рибосомы и принимает свою природную структуру: вторичную, третичную или четвертичную.
pазбирался: Надежда | обсудить разбор | оценить
В современной генетической инженерии часто применняют технологии, связанные с гомологичной рекомбинацией ДНК непосредственно в живом объекте. Один из примеров – система CRE-Lox P. Lox P – это последовательность нуклеотидов в ДНК фага Р1. Она состоит из 34 нуклеотидов. В середине располагается несимметричная последовательность из 8 нуклеотидов (показана серой стрелкой на рисунке). По краям располагаются так называемые палиндромные последовательности из 13 нуклеотидов (выделены на рисунке как пунктирные блоки). Они симметричны (чтобы в этом убедиться, достаточно прочитать обе последовательность от 5´- конца к 3´- концу). Именно эти палиндромные участки узнаёт особый фермент, вызывающий рекомбинацию, который обозначают CRE. Будем в дальнейшем называть этот фермент рекомбиназой CRE. Для того, чтобы состоялась рекомбинация, два сайта Lox P должны расположиться параллельно друг другу. Рекомбиназа CRE узнает эти сайты, внесет в ДНК разрезы в определённых местах, а затем 







pазбирался: Надежда | обсудить разбор | оценить
pазбирался: Надежда | обсудить разбор | оценить
Сначала найдём место расщепления плазмиды рестриктазой BglII: 


pазбирался: Надежда | обсудить разбор | оценить
По принципу комплементарности строим





















